Search results for " Thioredoxin"

showing 5 items of 5 documents

Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.

2017

Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferati…

0106 biological sciences0301 basic medicineTFs transcription factorsOverexpressionBiologíaBiFC bimolecular fluorescence complementationClinical BiochemistryCell Culture TechniquesTobacco BY-2 cells01 natural sciencesBiochemistryTBY-2 tobacco bright yellow-2DTT 14-dithiothreitolBimolecular fluorescence complementationThioredoxinsGene Expression Regulation PlantTrx thioredoxinlcsh:QH301-705.5GFP green fluorescent proteinlcsh:R5-920biologyProliferating cell nuclear antigen (PCNA)Cell cycleGlutathione3. Good healthCell biologyMitochondriaNTR NADPH thioredoxin reductaseProtein TransportDEM diethyl maleateRT-qPCR Reverse transcription quantitative polymerase chain reactionThioredoxinlcsh:Medicine (General)Oxidation-ReductionAMS 4-acetamido-4-maleimidylstilbene-22-disulfonic acidResearch PaperPCNA proliferating cell nuclear antigenOex overexpressingCell cycleNucleusThioredoxin o103 medical and health sciencesROS reactive oxygen speciesDownregulation and upregulationProliferating Cell Nuclear AntigenTobaccoDAPI 46-diamidine-2-phenylindolmCBM monochlorobimaneCellular compartmentCell NucleusCell growthOrganic ChemistryBotánicaPeasMolecular biologyYFP yellow fluorescent proteinProliferating cell nuclear antigenTBS Tris-buffered salineOD optical density030104 developmental biologylcsh:Biology (General)Cell cultureRNA reactive nitrogen speciesbiology.proteinPrx peroxiredoxinBSA bovine serum albumin010606 plant biology & botanyRedox biology
researchProduct

Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

2015

Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed …

Genome instabilityRedox signalingRNA UntranslatedEpigenetic regulation of neurogenesisDNA RepairHuR mRNA-binding protein in the 3′-untranslated regionClinical BiochemistryHDAC histone deacetylaseReview ArticleAP-1 activator protein 1BiochemistryApe-1 apurinic/apyrimidinic endonuclease 1GPx-1 glutathione peroxidase-1Epigenesis GeneticHistonesTrx thioredoxinPHD prolylhydroxylaseBER base excision repairlcsh:QH301-705.5HO-1 heme oxygenase-1EpigenomicsGeneticsRegulation of gene expressionNox member of the NADPH oxidase familylcsh:R5-920JmjC Jumonji C domain-containing histone demethylasesHIF-1α hypoxia inducible factor-1α5-hmC 5-hydroxymethylcytosineddc:Cell biologyMMP matrix metalloproteinaseGrx glutaredoxinGAPDH glyceraldehyde-3-phosphate dehydrogenaseNrf2 nuclear factor erythroid related factor 2DNA methylationEpigeneticslcsh:Medicine (General)Oxidation-ReductionSignal Transduction5-mC 5-methylcytosineDNA repairDNA damageNF-κB nuclear factor-κBBiologyGenomic InstabilityRNS reactive nitrogen speciesROS reactive oxygen speciesNER nucleotide excision repairSOD superoxide dismutaseOxyR transcription factor (hydrogen peroxide-inducible genes activator)HumansEpigeneticsOrganic ChemistryPETN pentaerithrityl tetranitrateGene regulationOxidative StressDNMT DNA methyltransferaseGene Expression Regulationlcsh:Biology (General)AREs AU-rich elementsHAT histone acetyltransferaseKeap1 kelch-like ECH-associated protein 1BiomarkersCOPD chronic obstructive pulmonary disorderDNA DamageRedox Biology
researchProduct

Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications

2017

Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS) and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1), mitofusin-2 (MFN2) and optic atrophy (OPA-1), while fission is controlled by mitochondrial fission 1 (FIS1), dynamin-related protein 1 (DRP1) and mitochondrial fission factor (MFF). PARKIN and (PTEN)-induced putative kinase 1 (PINK1) partici…

MiD51 mitochondrial dynamics proteins of 51 kDaΔΨm mitochondrial membrane potential0301 basic medicineMitochondrial fission factorClinical BiochemistryMitochondrial DegradationMFN2Review ArticleTXNIP thioredoxin interacting proteinMitochondrial DynamicsBiochemistryAdenosine TriphosphateGRP78 78 kDa glucose-regulated proteinMFF mitochondrial fission factorMFN2 mitofusin 2TRX2 thioredoxin 2Redox biologylcsh:QH301-705.5NF-κB nuclear factor kappa Blcsh:R5-920MitophagyType 2 diabetesDRP1 dynamin-related protein 1FIS1 fission protein 1BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3MitochondriaOPA1 optic atrophy 1SIRT1/3 sirtuin 1/3Biochemistrymitochondrial fusionTGF-β1 transforming growth factor-β1Mitochondrial fissionOMM outer mitochondrial membranelcsh:Medicine (General)MiD49 mitochondrial dynamics proteins of 49Nox 4 NADPH oxidase-4IMM inner mitochondrial membraneFIS1ATF6 activating transcription factor 6PINK1mTOR mammalian target of rapamycinCHOP C/EBP homologous proteinBiologymdivi-1 mitochondrial division inhibitor-1Mitochondrial Proteins03 medical and health sciencesROS reactive oxygen speciessXBP1 spliced X-box binding protein 1UCP-1 uncoupling protein-1MFN1 mitofusin 1SOD superoxide dismutaseLC3 1 A/1B-light chain 3HumansPINK1 (PTEN)-induced putative kinase 1S3 15-OxospiramilactoneOrganic ChemistrymtDNA mitochondrial DNAAMPK AMP-activated protein kinase030104 developmental biologyDiabetes Mellitus Type 2Mitochondrial biogenesislcsh:Biology (General)Oxidative stressp38 MAPK p38 mitogen-activated protein kinasep62/SQSTM1 ubiquitin and sequestosome-1Reactive Oxygen SpeciesRedox Biology
researchProduct

Age-dependent regulation of antioxidant genes by p38α MAPK in the liver

2018

p38α is a redox sensitive MAPK activated by pro-inflammatory cytokines and environmental, genotoxic and endoplasmic reticulum stresses. The aim of this work was to assess whether p38α controls the antioxidant defense in the liver, and if so, to elucidate the mechanism(s) involved and the age-related changes. For this purpose, we used liver-specific p38α-deficient mice at two different ages: young-mice (4 months-old) and old-mice (24 months-old). The liver of young p38α knock-out mice exhibited a decrease in GSH levels and an increase in GSSG/GSH ratio and malondialdehyde levels. However, old mice deficient in p38α had higher hepatic GSH levels and lower GSSG/GSH ratio than young p38α knock-…

ROS Reactive oxygen species;RSK1 Ribosomal S6 kinase10301 basic medicineMAPK/ERK pathwayAgingHPLC High-performance liquid chromatographyAntioxidantmedicine.medical_treatmentTBP TATA-binding proteinClinical BiochemistryDEN Diethyl nitrosamine;MKP-1 MAPK phosphatase-1IκB kinaseGCLc Glutamate cysteine ligase catalytic subunitp38 Mitogen-Activated Protein KinasesG6PDH Glucose-6-phosphate dehydrogenaseBiochemistryAntioxidantsMicechemistry.chemical_compoundSuperoxide Dismutase-1Akt Protein kinase B0302 clinical medicineNrf2 Nuclear factor erythroid 2-related factor-2IL InterleukinSOD1 Cu/Zn-superoxide dismutaselcsh:QH301-705.5Mice KnockoutMK2 MAP-activated protein kinase 2;PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alphachemistry.chemical_classificationlcsh:R5-920Trx ThioredoxinGlutathione DisulfideTNF-α Tumor necrosis factor-alphabiologyLPS Lipopolysaccharide;GSSG Oxidized glutathione;MEF Mouse embryonic fibroblastsNF-kappa BGstm1 Glutathione S-transferase mu 1CatalaseEndoplasmic Reticulum StressGlutathioneLiverGSH Reduced glutathione;Catalase030220 oncology & carcinogenesisJNK c-Jun N-terminal kinaselcsh:Medicine (General)Research Papermedicine.medical_specialtyNF-E2-Related Factor 2Glutamate-Cysteine LigaseMKK MAPK kinaseAP-1 Activator protein-1IKK IƙB KinaseGene Expression Regulation EnzymologicSuperoxide dismutase03 medical and health sciencesInternal medicineGlutamate cysteine ligaseEGFR Epidermal growth factor receptormedicineAnimalsNuclear factor ƙBAnd catalaseChIP Chromatin immunoprecipitation;Protein kinase BNF-ƙB Nuclear factor kappa BSuperoxide DismutaseSuperoxide dismutase 1Superoxide dismutase 2Organic ChemistryGlutathioneASK1 Apoptosis signal-regulating kinase 1ATF2 activating transcription factor 2;030104 developmental biologyEndocrinologyEnzymeHsp Heat shock proteinlcsh:Biology (General)chemistrybiology.proteinSOD2 Mn-superoxide dismutaseMAPK mitogen activated protein kinaseNEM N-ethyl maleimide;Redox Biology
researchProduct

Prolonging in utero-like oxygenation after birth diminishes oxidative stress in the lung and brain of mice pups☆

2013

Background Fetal-to-neonatal transition is associated with oxidative stress. In preterm infants, immaturity of the antioxidant system favours supplemental oxygen-derived morbidity and mortality. Objectives To assess if prolonging in utero-like oxygenation during the fetal-to-neonatal transition limits oxidative stress in the lung and brain, improving postnatal adaptation of mice pups. Material and methods Inspiratory oxygen fraction (FiO2) in pregnant mice was reduced from 21% (room air) to 14% (hypoxia) 8–12 h prior to delivery and reset to 21% 6–8 h after birth. The control group was kept at 21% during the procedure. Reduced (GSH) and oxidized (GSSG) glutathione and its precursors [γ-glut…

gsr (glutathione reductase gene)pgd phosphogluconate dehydrogenase geneGPX1FiO2 inspiratory oxygen fractionγ-GC (gamma-glutamyl cysteine)PhysiologyBiochemistryMice0302 clinical medicinePregnancyquinone oxidoreductase 1) [noq1 (NAD(P)H]NAD(P)H Dehydrogenase (Quinone)gapdh glyceraldehyde-3-phosphate dehydrogenase geneP7 1 week after birthGSH (reduced glutathione)Oxidoreductases Acting on Sulfur Group Donorsme1 (malic enzyme 1 gene)glutathioneLungSpO2 oxygen saturationlcsh:QH301-705.5γ-GC–NEM gamma-glutamyl cysteine covalently bonded to N-ethylmaleimidechemistry.chemical_classification0303 health sciencesGSSG oxidized glutathioneGlutathione peroxidaseO14 (hypoxia group FiO2=14%)Brainm/z mass-to-charge ratioG18 18th day of gestationCell Hypoxia3. Good healthpgd (phosphogluconate dehydrogenase gene)In uterogclm glutamylcysteine ligase modifier subunit genesrnx1 sulfiredoxin 1 genelcsh:Medicine (General)me1 malic enzyme 1 genesrnx1 (sulfiredoxin 1 gene)gclm (glutamylcysteine ligase modifier subunit gene)γ-GC–NEM (gamma-glutamyl cysteine covalently bonded to N-ethylmaleimide)trxnd1 (thioredoxin reductase 1 gene)redox regulation03 medical and health sciencesnoq1 NAD(P)H:quinone oxidoreductase 1γ-GC gamma-glutamyl cysteineCySH L-cysteinePregnancyg6pdx (glucose 6 phosphate dehydrogenase gene)GlutathioneOxygenationgapdh (glyceraldehyde-3-phosphate dehydrogenase gene)medicine.diseaseMice Inbred C57BLOxygenP1 24 h after birthGCL glutamylcysteine ligasechemistryOxidative stressRedox regulationNEM (N-ethylmaleimide)O14 hypoxia group (FiO2=14%)GSH reduced glutathioneClinical Biochemistrymedicine.disease_causechemistry.chemical_compoundGlutathione Peroxidase GPX1GS–NEM reduced glutathione covalently bonded to N-ethylmaleimideSpO2 (oxygen saturation)oxidative stressg6pdx glucose 6 phosphate dehydrogenase genelcsh:R5-920GSSG (oxidized glutathione)G18 (18th day of gestation)gsr glutathione reductase geneGlutathionegpx1 glutathione peroxidase 1 genemedicine.anatomical_structurem/z (mass-to-charge ratio)LC–MS/MS (liquid chromatography coupled to tandem mass spectrometry)FemaleLC–MS/MS liquid chromatography coupled to tandem mass spectrometryO21 (normoxia group FiO2=21%)paO2 (partial pressure of oxygen)gpx1 (glutathione peroxidase 1 gene)Research Papernoq1 (NAD(P)H:quinone oxidoreductase 1)CySH (l-cysteine)FiO2 (inspiratory oxygen fraction)CyS–NEM (cysteine covalently bonded to N-ethylmaleimide)030225 pediatricsmedicineP7 (1 week after birth)AnimalsGCL (glutamylcysteine ligase)P1 (24 h after birth)O21 normoxia group (FiO2=21%)CyS–NEM cysteine covalently bonded to N-ethylmaleimide030304 developmental biologyGlutathione PeroxidaseLungOrganic ChemistryGS–NEM (reduced glutathione covalently bonded to N-ethylmaleimide)trxnd1 thioredoxin reductase 1 geneMolecular biologypaO2 partial pressure of oxygenAnimals NewbornGene Expression Regulationlcsh:Biology (General)NEM N-ethylmaleimidefetal-to-neonatal transitionoxygenOxidative stressFetal-to-neonatal transition
researchProduct